Nitrogen Bridgehead Compounds. Part 4. ${ }^{1} \mathbf{1} \rightarrow \mathbf{3 N} \rightarrow \mathbf{C}$-Acyl Migration. Part 2^{1}

By István Hermecz, Zoltán Mészáros, Lelle Vasvári-Debreczy, Ágnes Horváth, Gábor Horváth, and Mariann Pongor-Csákvári, Chinion Pharmaceutical and Chemical Works, Research Centre, H-1325 Budapest Pf. 11.0 Hungary

Abstract

Ring closure of 2-substituted 3-(2-pyridylamino) acrylates (1) in phosphoryl chloride-polyphosphoric acid gives pyrido[1,2-a]pyrimidines (2), whereas (6-substituted 2-pyridyl) derivatives in Dowtherm A afford pyrido [1,2-a]pyrimidines (2) and 1,8-naphthyridines (3). The 6 -substituted pyrido[1,2-a]pyrimidines (2) can be converted thermally into 1,8 -naphthyridines (3) by $1 \longrightarrow 3 N \longrightarrow C$-acyl migration. Similar acyl migrations can be observed in other such systems.

We have reported ${ }^{1}$ that, in contrast to literature data, ${ }^{2}$ ethyl 1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine-3carboxylate (3 b) is not formed directly from diethyl (6-methyl-2-pyridylaminomethylene)malonate (lb) but by way of pyrido[1,2-a]pyrimidine (2b), and that compound (2b) is converted into (3b) by $1 \longrightarrow 3 N \longrightarrow C$ acyl migration. We have also shown that, in addition to the pyrido $[1,2-a]$ pyrimidines $(2 \mathrm{~h}$ and j$),{ }^{3}$ the 1,8 naphthyridines (3 h and j) can be prepared from the esters (1 h and j).

We now report further experiments conducted in order to establish (i) whether the behaviour of the acrylic acid derivatives ($\mathbf{l b}, \mathrm{h}$, and j) also applies to other acrylic acid derivatives (1), (ii) whether ring transformation also occurs with other pyrido[1,2-a]pyrimidines (2), and (iii) whether the acyl migration also occurs in other similar ring systems.

Ring closure was carried out in Dowtherm A at $250{ }^{\circ} \mathrm{C}$ or in phosphoryl chloride-polyphosphoric acid at $130^{\circ} \mathrm{C}$. The results are summarized in Table 1. Pyrido $[1,2-a]-$ pyrimidines and 1,8 -naphthyridines were separated on the basis of the differences in solubilities and basicities. In both reactions the same results were obtained from either the Z - or the E-isomer [if $\mathrm{R}^{1} \neq \mathrm{CO}_{2} \mathrm{Et}$ in (1)] indicating a fast isomerization under the given conditions.

Ring transformations occurred in Dowtherm A at $250{ }^{\circ} \mathrm{C}$ and in liquid paraffin at $300-350{ }^{\circ} \mathrm{C}$. The results are presented in Table 2. Isomerization failed with the pyridopyrimidines ($2 ; \mathrm{R}^{2}=\mathrm{H}$). At temperatures between 250 and $350^{\circ} \mathrm{C}$ the starting substances were unaffected and at higher temperatures ($350-400{ }^{\circ} \mathrm{C}$) charring occurred. Isomerization was however successful for the compounds ($2 ; \mathrm{R}^{2} \neq \mathrm{H}$).

The nitrile (2 h) was prepared from the carboxamide ${ }^{4}$ (2; $\mathrm{R}^{1}=\mathrm{CO} \cdot \mathrm{NH}_{2}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$) with phosphoryl chloride. The pyridopyrimidines ($2 \mathrm{w}, \mathrm{x}$, and y) ${ }^{5 a}$ were prepared from the corresponding isopropylidene (2pyridylaminomethylene)malonates. ${ }^{5 a}$ The pyridopyrimidine (2aa) was prepared from 2-amino-6-methyl-

[^0]pyridine and ethyl 3-oxovalerate in phosphoryl chloridepolyphosphoric acid, similarly to (2z), ${ }^{6}$ and (2cc) was obtained from (2 bb$)^{6}$ with piperidine.

Characterization of Pyrido $[1,2-\mathrm{a}]$ pyrimidines and 1,8-Naphthyridines.-Tschitschibabin ${ }^{7}$ observed that on boiling pyrido $[1,2-a]$ pyrimidines with acids or bases they decompose to the initial aminopyridines, whereas the 1,8 -naphthyridine ring system remains stable under similar conditions. The pyrido $[1,2-a]$ pyrimidines have lower m.p.s (see Table 2) and dissolve in organic solvents more readily than the corresponding 1,8 -naphthyridines.
U.v. spectra. The longest wavelength absorption maximum appears above 350 nm in the case of the pyrido $[1,2-a]$ pyrimidines and is below 340 nm in that of the 1,8 -naphthyridines (see Table 3). \dagger These bands can be attributed to $\pi-\pi^{*}$ transitions of charge-transfer character. In ethanolic solution a bathochromic shift of about 25 nm can be observed ${ }^{8}$ with the pyridopyrimidines when a donor substituent is present in position 6 or an acceptor substituent in position 3. In other positions substituents have smaller effect. The 1,8 -naphthyridines exist predominantly in the 4 -oxo rather than the 4 hydroxy forms; for example the u.v. spectrum of the 3,7dimethyl derivative $(3 \mathrm{~m})$ is very similar to that of the 1-ethyl derivative (4) (see Figure 1). We have obtained similar results with the other 1,8 -naphthyridines (3).
I.r. spectra. The stretching band of the carbonyl group in position 4 of the 1,8 -naphthyridines appears between 1615 and $1680 \mathrm{~cm}^{-1}$, whereas in the pyrido [1,2-a]pyrimidines it occurs between 1670 and $1705 \mathrm{~cm}^{-1}$ (see Table 4).
Discussion.-In the ring closure of the acrylic acid derivatives (1), initial cyclization always occurred on the nitrogen atom of the pyridine ring, and was occasionally followed by ring transformation $(1 \longrightarrow 3 N \longrightarrow C$-acyl migration). In the ring closures performed in Dowtherm A, the presence of a pyrido[1,2-a]pyrimidine could be detected by t.l.c. even when only a 1,8 -naphthyridine was isolated. If, however, the pyrido $[1,2-a]$ pyrimidine
${ }^{4}$ G. Náray-Szabó, I. Hermecz, and Z. Mészáros, J.C.S. Perkin I, 1974, 1753.
${ }^{5}$ (a) B.P. 1,147,760 (Chem. Abs., 1969, 71, 49,967a); (b) B.P. 1,147,759 (Chem. Abs., 1969, 71, 70125j).
${ }_{6}$ Z. Mészáros, J. Knoll, P. Szentmiklósi, Å. Dávid, G. Horvath, and I. Hermecz, Arzeim.-Forsch., 1972, $22,815$.
${ }^{7}$ A. E. Tschitschibabin, Ber., 1924, 57, 1168.
${ }^{8}$ G. Horváth, Â. I. Kiss, Z. Mészáros, and I. Hermecz, Acta Chim. Acad. Sci. Hung., 1974, 83, 15.
contained in position 3 a more weakly electron-withdrawing group than the ester group, in Dowtherm A the primary pyrido[1,2-a]pyrimidine product could be isolated even in the case of the 6 -substituted pyridine
leading to a larger quantity of 1,8 -naphthyridine. For example compound (ls) in 60 min gave 69.4% (2 s) and $18.6 \%(3 \mathrm{~s})$, in $90 \mathrm{~min} 54.4 \%(2 \mathrm{~s})$ and $41.5 \%(3 \mathrm{~s})$, in 120 $\min 42.4 \%(2 \mathrm{~s})$ and $51.8 \%(3 \mathrm{~s})$, in $180 \mathrm{~min} 29.2 \%$

Table 1
Ring closure of acrylic esters (1)

(1)
(2)
(3)

R^{2}	R^{3}	R^{1}	Dowtherm A $\left(250{ }^{\circ} \mathrm{C}\right)$			$\mathrm{POCl}_{3}-\mathrm{PPA}\left(130{ }^{\circ} \mathrm{C}\right)$	
			2\%	3\%	Ref.	2\%	Ref.
a; H	H	$\mathrm{CO}_{2} \mathrm{Et}$	94	0	a	95	f
b; Me	H	$\mathrm{CO}_{8} \mathrm{Et}$	0	90	b	95	f
c; Et	H	$\mathrm{CO}_{3} \mathrm{Et}$	0	43	c	80	f
d; Me	Me	$\mathrm{CO}_{8} \mathrm{Et}$	0	?	c	80	
e; NHAc	H	$\mathrm{CO}_{2} \mathrm{Et}$	0	52	c	Decomp.	
f; Br	H	$\mathrm{CO}_{2} \mathrm{Et}$	Decomp.		b	No reaction	f
g; H	H	CN	?	0	d	No reaction	
h; Me	H	CN	?	0	d	No reaction	e
			0	60 *	d		
i; H	H	COMe	82	0	d	Decomp.	
j; Me	H	COMe	?	0	d	Decomp.	e
			13	35			
			0	80 *	e		
k; Me	H	COCF_{3}	0	70		40	
1; H	H	Me	94	0		96	g
m; Me	H	Me	85	4		85	g
n ; OH	H	Me	91	0		Decomp.	
o; NHAc	H	Me	60	23		Decomp.	
p; H	H	Et				90	
q; Me	H	Et	62	11		95	
r; H	H	Ph	97	0		85	g
s; Me	H	Ph	82	10		98	g
t; OH	$\stackrel{\mathrm{H}}{4}$	Ph	61	5		Decomp.	
u; NHAc	H	Ph	0	85		Decomp.	

* At $300{ }^{\circ} \mathrm{C}$ in paraffin oil.
${ }^{a}$ R. Adams and I. J. Pachter, J. Amer. Chem. Soc., 1952, 74, 5491. ${ }^{b}$ Ref. 2. ${ }^{\circ}$ G. Y. Lesher and M. D. Gruett, Belg. P., 612,258, (Chem. Abs., 1963, 58, 7953). ${ }^{\mathbf{d}}$ Ref. 3. • Ref. 1. ${ }^{\prime}$ Ref. 6. ${ }^{\circ}$ Ref. 4.
derivatives [see e.g. (lm, q, and s) in Table l]. When the reaction period was longer or the temperature higher

(3m) $\int \mathrm{POCl}_{3}$

(5)

$\xrightarrow{\mathrm{NaOEt}}$

Scheme 1
in the case of the acrylic acid derivatives ($1 \mathrm{~m}, \mathrm{n}, \mathrm{o}, \mathrm{q}, \mathrm{s}$, and t), thermodynamic product control prevailed.
$(2 \mathrm{~s})$ and $61.0 \%(3 \mathrm{~s})$, in $240 \mathrm{~min} 11.0 \%(2 \mathrm{~s})$ and 85.5% $(3 \mathrm{~s})$, and in $300 \mathrm{~min} 8.5 \%$ (2 s) and 87.2% (3 s).

Ring closure of the cyanoacetic acid derivative (lh) took place only above $280^{\circ} \mathrm{C}$, whereas the ring transformation of (2 h) occurred even at $250^{\circ} \mathrm{C}$.

The ring transformation of the 6 -substituted pyrido-[1,2-a]pyrimidines is due to the fact that the 6 -substituent and the 4 -oxo-group are nearly in the same plane; thus the $\mathrm{C}(4)-\mathrm{N}(5)$ bond is stretched, and upon transfer of adequate energy $1 \longrightarrow 3 N \longrightarrow C$-acyl migration occurs. For example the length of this bond in (2b) is $1.472 \AA{ }^{9}$

Cyclization is inhibited by the presence of a bulky group such as a bromine atom, in position 6 of the acrylic acid derivative (l)

Ring transformation is affected primarily by R^{2} and also by R^{1}. With respect to R^{2}, transformation is influenced in the following order: $\mathrm{OH}<\mathrm{Me}<\mathrm{NHAc}$,

- K. Sasvári, J. Csonka-Horvai, and K. Simon, Acta Cryst., 1972, 28B, 2405.
whereas for R^{1} the order is: $\mathrm{CO}_{2} \mathrm{Et} \sim \mathrm{CN} \sim \mathrm{COCF}_{3} \sim$ $\mathrm{COCH}_{3}>\mathrm{Ph}>\mathrm{H}>$ alkyl.

It is of interest to compare the rate of ring closure $\left(k_{1}\right)$ with that of ring transformation $\left(k_{2}\right)$ in the case of the 6 -methylpyridylaminoacrylic acid derivatives (l). The compounds investigated can be classified as follows: (a) $k_{1}>k_{2}$ if $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}, \mathrm{H}$, or Ph (in Dowtherm A after a
appears in fact to have been the pyrido[1,2-a]pyrimidine (9), as indicated by the similarity of its u.v. spectrum (Figure 2) to those of other pyrido[1,2-a]pyrimidines (see Scheme 2).

The observed ring transformation of 6 -substituted acrylates (1) may well take place in case of other similar α-amino-heterocycles too (Scheme 3).

Table 2
Ring transformations of the pyridopyrimidines (2)

(2)

R^{4}	Temp. (${ }^{\circ} \mathrm{C}$)	Time (min)
H	250	30
H	250	30
H	250	30
H	250	150
H	250	60
H	250	30
H	340	30
H	350	15
H	250	200
H	325	30
H	345	15
H	345	15
H	350	30
H	350	20
H	250	20
Me	350	25
Me	350	20
Et	350	20
Cl	320	20
Pi*	350	10

* $\mathrm{Pi}=$ piperidino.
(3)

R^{2}	R^{3}	R^{1}
b ; Me	H	$\mathrm{CO}_{2} \mathrm{Et}$
c; Et	H	$\mathrm{CO}_{2} \mathrm{Et}$
d; Me	Me	$\mathrm{CO}_{2} \mathrm{Et}$
h ; Me	H	CN
j; Me	H	COMe
k; Me	H	COCF_{3}
m ; Me	H	Me
n ; OH	H	Me
o; NHAc	H	Me
q; Me	H	Et
s ; Me	H	Ph
t; OH	H	Ph
v; Me	H	H
w; OH	H	H
x ; NHAc	H	H
y; Me	H	H
z; Et	H	H
aa; Me	H	H
bb; Me	H	H
cc; Me	H	H

(2)
(2)
m.p. $\left(\mathrm{C}^{\circ}\right)$
$98-100$
$88-89$
$146-147$
206
$129-130$
$172-173$
$73-74$
$335-338$
$102-104$
$68-70$
$124-125$
$325-326$
$178-179$
290
$166-167$
$108-109$
$72-73$
$92-94$
$123-124$
$83-85$

(3)	Yield
m.p. $\left(\mathrm{C}^{\circ}\right)$	$(\%)$
$274-277$	80
$249 — 250$	75
$232-234$	80
>300	60
>300	60
>300	70
280	80
$350-355$	60
$322-325$	80
$215-216$	70
$315-317$	100
>360	40
Decomp.	
>360	40
$310-315$	90
$320 — 323$	80
$242 — 243$	80
$214 — 215$	70
$210-212$	80

short reaction period, when kinetic control prevails, mainly pyrido[1,2-a]pyrimidine is formed); (b) $k_{1} \sim k_{2}$ if $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$, COMe , or COCF_{3} (in Dowtherm A essentially only l,8-naphthyridine can be isolated, even after short reaction periods) ; and (c) $k_{1}<k_{2}$ if $\mathrm{R}^{1}=$ CN [cyclization of (lh) can only be carried out above $280^{\circ} \mathrm{C}$, even though ring transformation occurs at $250^{\circ} \mathrm{C}$].

The discrepancies in the literature concerning the chemistry of pyrido [1,2-a]pyrimidines and 1,8 -naphthyridines may probably be ascribed to a lack of knowledge of this ring transformation.

Richardson and McCarty ${ }^{10}$ presumed that the $1,8-$ naphthyridine (8) was formed in the cyclization of the malonic ester (7) in Dowtherm A. However, the product

[^1]Conversion of Pyrimido[1,2-a][1,8]naphthyridines (12) into Anthyridines (13).-Carboni et al. ${ }^{11}$ have studied the ring closure of the acrylates (11) in polyphosphoric acid

(7)

Scheme 2
at $200^{\circ} \mathrm{C}$, in Dowtherm A at $250{ }^{\circ} \mathrm{C}$, and in liquid paraffin at $300-340^{\circ} \mathrm{C}$. Pyrimido[1,2-a][1,8]naphthyridines (12) were obtained under milder conditions than
anthyridines (13). Some anthyridines (13) were formed from the corresponding pyrimidonaphthyridines (12) by thermal isomerization in the melt or in solution.

Scheme 3

Cyclizations of the malonic esters ($11 ; \mathrm{R}^{\mathbf{1}}=\mathrm{CO}_{2} \mathrm{Et}$), the cyanoacetic esters ($11 ; \mathrm{R}^{1}=\mathrm{CN}$), and the acetoacetic esters ($11 ; \mathrm{R}^{1}=\mathrm{COMe}$) were studied in detail by Harper and Wibberley. ${ }^{12}$ They obtained either pyrimido $[1,2-a][1,8]$ naphthyridines ${ }^{12 a}$ or anthyridines, ${ }^{12 b}$ depending on the nature of the starting material. Ring closure was usually carried out in Dowtherm A. However, cyanoacetic acid derivatives could be cyclized only at $330-340{ }^{\circ} \mathrm{C}$ in liquid paraffin, to give anthyridines. In the formation of the anthyridines, Harper and Wibberley assumed that cyclization occurred directly on C-3 of the naphthyridine. In our opinion, in the case of the acrylic acid derivatives (11), initial cyclization occurs

on the ring nitrogen atom; this hypothesis is supported by the observation of Carboni et al. ${ }^{11 b, c}$

Ring closure of the bismalonate (14) (Scheme 4) gave both an anthyridine (16) ${ }^{11 \rho}$ (after 6 h) and a pyrimido-

[^2]$[1,2-a][1,8]$ naphthyridine (15) ${ }^{11 g, 12 a}$ (after $10-15 \mathrm{~min}$) in Dowtherm A at $250{ }^{\circ} \mathrm{C}$. When we heated compound (15) in Dowtherm A for 6 h , the anthyridine (16) was formed.

If the initial acrylic acid derivative (11) carried a $-\mathrm{CH}=$ group instead of N in position 8 , or if the N atom was in another position, the initially formed nitrogen bridgehead compounds could not be isomerized to linear products. Thus, we obtained from the quinoline derivative ($\mathbf{1 7}$ a) ${ }^{\mathbf{1 0}, 13}$ and from the quinoxaline derivative (17c) the corresponding nitrogen bridgehead compounds,

Scheme 4
but our attempt to isomerize the products (18a and c) in liquid paraffin at temperatures up to $370^{\circ} \mathrm{C}$ failed. From the 1,6 -naphthyridine derivative (17 b) similarly a nitrogen-bridgehead compound (18b) was obtained ${ }^{14}$ in Dowtherm A.

Conversion of Dipyrido $\left[1,2-\mathrm{a}: 2^{\prime}, 3^{\prime}\right.$-d $]$ pyrimidines (20) into Anthyridines (21).-From the 2-(2-pyridylamino)nicotinic acid (19; $\mathrm{R}=\mathrm{H}$), Carboni $e t$ al. ${ }^{15 a}$ obtained the dipyrido $\left[1,2-a: 2^{\prime}, 3^{\prime}-d\right]$ pyrimidine ($20 ; \mathrm{R}=\mathrm{H}$), which could not be isomerized to the anthyridine (21). ${ }^{15 b}$ Cyclizations of the amino-derivative ${ }^{15 b}$ ($19 ; \mathrm{R}=\mathrm{NH}_{2}$) and of the methyl derivative ${ }^{15 c}(19 ; \mathrm{R}=\mathrm{Me})$ in polyphosphoric acid at $170^{\circ} \mathrm{C}$ also afforded the corresponding

[^3]dipyridopyrimidines (20). The amino-derivative (20; $\mathrm{R}=\mathrm{NH}_{2}$) could be isomerized to the anthyridine (21) under milder conditions ($200{ }^{\circ} \mathrm{C}$ in sulphuric acid) than the methyl derivative (21 ; $\mathrm{R}=\mathrm{Me}$) $\left(270{ }^{\circ} \mathrm{C}\right.$ in sulphuric acid). The anthyridines (21) were also prepared directly from the appropriate nicotinic acids ($19 ; \mathrm{R} \neq \mathrm{H}$) under the above conditions.

Conversion of Pyrimido $[1,2-\mathrm{a}]$ pyrazines (23) into pyrido-[2,3-b]pyrazines (24). -In Dowtherm, the pyrazine derivative ($22 ; \quad \mathrm{R}^{1}=\mathrm{H}$) gave ${ }^{16}$ the pyrimido $[1,2-a]$ pyrazine $\quad\left(23 ; \quad \mathrm{R}^{1}=\mathrm{H}\right) . \quad 6$-Methoxypyrimido $[1,2-a]$ -pyrazine-4-one was formed ${ }^{5 a}$ from isopropylidene (6-methoxypyrazin-2-ylamino)methylenemalonate, whereas the methoxy-derivative of (22) afforded the pyrido-$[2,3-b]$ pyrazine (24). ${ }^{17}$ Pyrido $[2,3-b]$ pyrazines (24) were also formed ${ }^{18,19}$ from other 6 -substituted pyrazines (22; $\mathrm{R}^{1} \neq \mathrm{H}$), but the 6 -methyl derivative $\left(22 ; \mathrm{R}^{1}=\right.$ Me) gave both the pyrimido [1,2-a]pyrazine (23; $\mathrm{R}^{1}=$ Me) and the pyrido $[2,3-b]$ pyrazine ($24 ; \mathrm{R}^{1}=\mathrm{Me}$).

Conversion of Pyrimido[1,6-a]pyrimidines (26) into Pyrido $[2,3-\mathrm{d}]$ pyrimidines (27).-Derivatives of pyrimido-$[1,6-a]$ pyrimidine (26) were obtained ${ }^{20}$ from the pyrimidine derivatives (25) unsubstituted in position 2 , whereas

the 2 -substituted compounds yielded ${ }^{21,22 a, b}$ pyrido-[2,3-d] pyrimidines (27).

Conversion of Pyrimido $[1,2$-b]pyridazines (29) into Pyrido[2,3-c]pyridazines (30).-From the pyridazine
${ }^{16}$ D. L. Trapenier, L. W. Rampy, K. L. Shriver, J. N. Eble, and P. J. Shea, J. Medicin. Chem., 1968, 11, 1045.
${ }_{17}$ R. Albrecht and G. A. Hoyer, Chem. Ber., 1972, 105, 3118.
${ }^{18}$ C. Nakao, M. Fukushima, H. Yamagisawa, and S. Sugawara, Chem. and Pharm. Bull. (Japan), 1974, 22, 1864.
${ }^{19}$ T. Tanaka and S. Narita, J. Pharm. Soc. Japan, 1975, 95, 1092.
${ }^{20}$ B. H. Rizkalla and A. D. Broom, J. Org. Chem., 1972, 37, 3980.
derivatives $\left(28 ; \mathrm{XR}^{1}=\mathrm{N}\right)$, pyrimido $[1,2-b]$ pyridazines (29) were obtained ${ }^{23 a-c, 24}$ in polyphosphoric acid at $100-120{ }^{\circ} \mathrm{C}$ or Dowtherm A at $250^{\circ} \mathrm{C}$, whereas the N-oxides (28; $\mathrm{XR}^{1}=\mathrm{N} \longrightarrow \mathrm{O}$) in Dowtherm A gave ${ }^{23 d}$

1
(26) $X=C, Y=N, Z=C H, R^{\prime}=H$
(24) $X=C, Y=C H, Z=N, R^{\prime} \neq H$
(29) $Y=Z=C H, X R^{\prime}=N$
(27) $X=C, Z=C H, Y=N, R^{1} \neq H$
(30) $Y=Z=C H, X R^{\prime}=N \rightarrow O$
pyrido $2,3-c]$ pyridazines (30). (In the latter case direct cyclization onto the carbon atom cannot be exluded.)

EXPERIMENTAL

I.r. spectra were measured for KBr pellets with a Zeiss UR-20 spectrometer, u.v. spectra for ethanolic solutions with a Unicam SP 800 spectrometer, and n.m.r. data with a Perkin-Elmer R12 spectrometer (tetramethylsilane standard in CDCl_{3}).

Cyclizations in Phosphoryl Chloride-Polyphosphoric Acid. -The acrylate (1) (0.1 mol) was stirred at $130-135{ }^{\circ} \mathrm{C}$ in phosphoryl chloride-polyphosphoric acid (45.6 and 7 g , respectively). After evolution of hydrogen chloride had ceased, the mixture was broken up at $80-100^{\circ} \mathrm{C}$ with ethanol (100 ml). The hydrochloride of (2) which precipitated on cooling was filtered off, washed with ethanol, and converted into the base.

If no hydrochloride was precipitated, the mixture was poured into water (300 ml), neutralized with aqueous 20% sodium carbonate, and extracted with chloroform. The extract was then clarified with activated carbon, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the product crystallized (yields in Table 1).

Cyclizations in Dowtherm A.-The acrylate (1) (5 g) was added to Dowtherm A $(100 \mathrm{ml})$ at $250-255^{\circ} \mathrm{C}$, then the mixture was stirred for 30 min and cooled quickly to room temperature. The precipitate (3) was filtered off and the filtrate diluted with light petroleum (200 ml). If compound

[^4](2) was not precipitated, the system was extracted with 5% hydrochloric acid; the extract was neutralized (with aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$) then extracted with chloroform. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ solution was evaporated. Yields are in Table 1, m.p.s in Table 2.

Cyclizations in Liquid Paraffin.-The acrylate (1) (1 g) was added to liquid paraffin $(100 \mathrm{ml})$ at $300^{\circ} \mathrm{C}$. The mixture was heated for 30 min , then cooled to room temperature, and the product (3) was filtered off and washed with benzene. Yields are in Table 1.

Ring Transformations in Dowtherm A.-After heating Dowtherm A (100 ml) to $250-255{ }^{\circ} \mathrm{C}$, the 6 -substituted pyridopyrimidine (2) (5 g) was added and the mixture was heated for the period given in Table 2. After cooling, the precipitated product (3) was filtered off and washed with benzene. M.p.s and yields are in Table 2.

Ring Transformations in Liquid Paraffin.-Liquid paraffin $(100 \mathrm{ml})$ was heated to the temperature given in Table 2, the 6 -substituted pyridopyrimidine (2) (1 g) was added, and the mixture was heated for the given period. After cooling and dilution with light petroleum (100 ml) the precipitated (3) was filtered off and washed with benzene. M.p.s and yields are in Table 2.

6-Methyl-4-oxopyrido [1,2-a]pyrimidine-3-carbonitrile (2h). - 6-methyl-4-oxopyrido[1,2-a]pyrimidine-3-carboxamide ${ }^{4}$ $(2.03 \mathrm{~g})$ was suspended in dimethylformamide (7.3 g) and phosphoryl chloride (3.1 g) was added dropwise at $15-20^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $60^{\circ} \mathrm{C}$ and for 1 h at $100^{\circ} \mathrm{C}$, cooled, and poured into ice (50 g). The pH of the solution was adjusted to 7 with aqueous 20% sodium carbonate. The precipitated nitrile (2 h) (0.9 g) was filtered off; m.p. 206° (from ethanol) (lit. ${ }^{3} 207^{\circ}$).

2-Ethyl-6-methylpyrido[1,2-a]pyrimidin-4-one (2aa).-2-Amino-6-methylpyridine (10.8 g) and ethyl 3 -oxovalerate (14.4 g) were stirred for 3.5 h at $130^{\circ} \mathrm{C}$ in phosphoryl chloride (36 ml) and polyphosphoric acid (7 g), then the mixture was broken up (100 ml) between $80-100^{\circ} \mathrm{C}$ with ethanol. After cooling the precipitated hydrochloride of (2aa) (15.9 g ; m.p. 271°) was filtered off and converted into the base, m.p. 92-95 (from ethanol), $\delta 1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$, $2.65\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right), 3.06(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 6.23(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $6.56-6.80(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, and $7.30-7.57(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and}$ $9-\mathrm{H}$) (Found: $\mathrm{C}, 70.0 ; \mathrm{H}, 6.3 ; \mathrm{N}, 14.8 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}, 6.4 ; \mathrm{N}, 14.9 \%$).

6-Methyl-2-piperidinopyrido[1,2-a]pyrimidin-4-one (2cc). -A solution of piperidine (5.1 g) in dioxan (5 ml) was added dropwise to a solution of the chloro-pyridopyrimidine (2 bb) $(3.88 \mathrm{~g})$ in dioxan $(20 \mathrm{ml}) \mathrm{kept}$ at $60^{\circ} \mathrm{C}$, then the mixture was stirred for 1.5 h at $60^{\circ} \mathrm{C}$. After cooling, the precipitated piperidine hydrochloride was filtered off, the filtrate was evaporated, and the residue recrystallized from ethyl acetate-ether, giving the product (2cc) (3.5 g); m.p. $83-85^{\circ}$, $\delta 1.5-1.9\left(6 \mathrm{H}, \mathrm{m}, 3,4\right.$, and $5-\mathrm{H}_{2}$ of piperidino), $2.98(3 \mathrm{H}, \mathrm{s}$, $6-\mathrm{Me}), 3.45-3.80\left(4 \mathrm{H}, \mathrm{m}, 2-\right.$ and $6-\mathrm{H}_{2}$ of piperidino), $5.50(1 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}), 6.30-6.55(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.92-7.51$ (2 $\mathrm{H}, \mathrm{m}, 8$ - and $9-\mathrm{H}$) (Found: C, 68.3; H, 7.2; N, 17.3 . $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 7.1 ; \mathrm{N}, 17.2 \%$).

4-Chloro-3,7-dimethyl-1,8-naphthyridine (5).-The naphthyridone $(3 \mathrm{~m})(1.74 \mathrm{~g})$ was heated in phosphoryl chloride $(15 \mathrm{ml})$ in an oil-bath, the temperature of which was gradually raised from 95 to $130^{\circ} \mathrm{C}$ in 35 min . The cooled mixture was poured into ice (50 g), neutralized with aqueous 20% sodium carbonate, and extracted with chloroform (3×50 ml). The chloronaphthyridine (5) (1.75 g), obtained after evaporation was recrystallized from acetone; m.p. 134-
$135^{\circ}, \lambda_{\text {max. }} 320(\log \varepsilon 3.87), 307$ (3.81), and $269 \mathrm{~nm}(3.70)$, $\delta 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.45(1 \mathrm{H}, \mathrm{d}), 8.46(1 \mathrm{H}$, d), and $8.96(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ (Found: C, 62.6; H, 4.7; Cl, 18.5 ; N, 14.5. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 62.4 ; \mathrm{H}, 4.7 ; \mathrm{Cl}, 18.4$; N, 14.5%).

4-Ethoxy-3,7-dimethyl-1,8-naphthyridine (6).-Sodium ethoxide [from sodium (0.23 g) in ethanol (6 ml)] was added to a solution of the chloro-naphthyridine (5) (1.92 g) in ethanol (8 ml). The mixture was stirred for 1 h at room temperature and then evaporated. A solution of the residue in chloroform (30 ml) was washed with water ($2 \times 30 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The resulting ethoxynaphthyridine (6) (1.7 g) was recrystallized from light petroleum; m.p. $75-77^{\circ}, \lambda_{\text {max }} 316.5$ ($\log \varepsilon 3.77$), 304 (3.77), and 277 nm (3.65), $\delta 1.50(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.79(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{O} \cdot \mathrm{CH}_{3}\right), 7.38(1 \mathrm{H}, \mathrm{d}), 8.40(1 \mathrm{H}, \mathrm{d})$, and 8.96 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$) (Found: C, 71.4; H, 7.0; N, 13.9. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 13.9 \%$).

1-Ethyl-3,7-dimethyl-1,8-naphthyridin-4(1H)-one (4).After stirring the naphthyridone (3 m) (8.7 g) in dimethylformamide (500 ml) in the presence of ethyl iodide (46.5 g) and potassium carbonate (14 g) for 6 h at $100^{\circ} \mathrm{C}$, the mixture was evaporated in vacuo. The residue was dissolved in water (ll) with heating, and the solution was clarified, filtered, and extracted with chloroform ($4 \times 100 \mathrm{ml}$). The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extract was evaporated. The resulting ethylnaphthyridone (4) (8.3 g) was recrystallized from water and dried $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$; m.p. $112-113^{\circ}, \nu_{\text {max. }} 1640 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 342$ ($\log \varepsilon 3.98$), $289 \operatorname{infl}(3.01), 278$ (3.23), and $249 \mathrm{~nm}(4.35)$, $\delta 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.43$ $\left.2 \mathrm{H}, \mathrm{q}, \mathrm{N} \cdot \mathrm{CH}_{2}\right), 7.19(1 \mathrm{H}, \mathrm{d}), 7.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and 8.67 (1 H, d) (Found: C, 71.2; H, 6.8; N, 13.9. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 13.9 \%$).

6-Acetamidopyrido[1,2-a]pyrimidin-4-one (2x).—Isopropylidene (6-acetamido-2-pyridylamino)methylenemalonate ${ }^{5 b}(19 \mathrm{~g})$ was added to Dowtherm A $(200 \mathrm{ml})$ at $250^{\circ} \mathrm{C}$, and after 4 min the mixture was quickly cooled to room temperature. The precipitated naphthyridone (3 x) was filtered off ($0.7 \mathrm{~g}, 5.5 \%$), m.p. 315° (lit., ${ }^{5 a} 319-320^{\circ}$), then the filtrate was diluted with light petroleum (800 ml). The precipitated pyridopyrimidone (2 x) ($10 \mathrm{~g}, 79 \%$) was filtered off and recrystallized from ethanol; m.p. 166-167 (lit., ${ }^{5 a}$ 162.6-164.0 ${ }^{\circ}$.

Ethyl7-Carbamoyl-4-oxopyrido[1,2-a]pyrimidine-3-carboxylate (9).-The malonate (7) $(6.14 \mathrm{~g})$ was heated for 25 min in Dowtherm A (200 ml) at $250^{\circ} \mathrm{C}$. After cooling, the amide (9) (5.4 g) was filtered off; m.p. 275° (from dimethylformamide) (lit., ${ }^{10} 260-262^{\circ}$), $\lambda_{\max } 368(\log \varepsilon 4.16)$ and 255 nm (3.72), $v_{\text {max. }} 1755,1700$, and $1670 \mathrm{~cm}^{-1}$.

Ethyl 7-Cyano-4-oxopyrido[1,2-a]pyrimidine-3-carboxylate (10).-(a) The malonate (7) (6.14 g) was heated for 4 h at $140{ }^{\circ} \mathrm{C}$ in phosphoryl chloride (9 ml) and polyphosphoric acid, (1.4 g) then the mixture was broken up with ethanol $(30 \mathrm{ml})$. After cooling, the precipitated crystals were filtered off, suspended in chloroform (10 ml) and filtered off again. The pyridopyrimidine hydrochloride $[(10), \mathrm{HCl}]$ (5.8 g), m.p. $196-199^{\circ}$, was heated for 30 min in benzene $(300 \mathrm{ml})$ and triethylamine (30 ml), then triethylamine hydrochloride was filtered off and benzene was removed by evaporation, leaving the pyridopyrimidine (10) (3.2 g), m.p. 203-204 ${ }^{\circ}$ (from ethanol).
(b) The amide (9) (2.61 g) was heated in phosphoryl chloride (11 ml) for 4 h at $110-120^{\circ} \mathrm{C}$, then the phosphoryl chloride (9.5 ml) was removed by distillation and the residue was broken up with ethanol (10 ml). After cooling, the
precipitated hydrochloride of (10) was filtered off, suspended in chloroform (10 ml) and filtered off again. The base was liberated; m.p. 202-203 ${ }^{\circ}$.

Diethyl 1,4,6,9-Tetrahydro-4,6-dioxoanthyridine-3,7-dicarboxylate (16).-The pyrimidonaphthyridine (15) ${ }^{11 g}$ (1 g) was stirred for 6 h in Dowtherm A (20 ml) at $250-255^{\circ} \mathrm{C}$. After cooling, the precipitated anthyridine (16) (0.8 g) was filtered off and washed with benzene; m.p. 300° (lit., ${ }^{11}$ $>320^{\circ}$).

Ethyl 1-Oxopyrimido[1,2-a]quinoxaline-2-carboxylate (18c). -The acrylate (17 c) (15.8 g) was added to Dowtherm A
$(200 \mathrm{ml})$ at $250-255^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . After cooling, the mixture was diluted with light petroleum $(800 \mathrm{ml})$. The precipitated pyrimidoquinoxaline (18c) (11 g) was filtered off and washed with light petroleum; m.p. 128° (from ethanol), $\lambda_{\max } 413$ ($\log \varepsilon 3.92$), 392 (4.08), 284 (3.94), and $264 \mathrm{~nm}(4.04), \delta 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.49\left(2 \mathrm{H}, \mathrm{q}, \mathrm{O} \cdot \mathrm{CH}_{2}\right)$, $7.69-8.00(2 \mathrm{H}, \mathrm{m}), 8.06-8.25(1 \mathrm{H}, \mathrm{m}), 8.99(2 \mathrm{H}, \mathrm{s}, 3$ - and $5-\mathrm{H}$) , and $9.75-10.20(\mathrm{l} \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$ (Found: C, 62.6; H, 4.2; $\mathrm{N}, 15.8 . \quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.5 ; \mathrm{H}, 4.1 ; \mathrm{N}$, 15.6\%).
[6/1351 Received, 12th July, 1976]

[^0]: \dagger Tables 3 and 4 and Figures 1 and 2 are available as Supplementary Publication No. SUP 21970 (5 pp.) (see Notice to Authors No. 7, J.C.S. Perkin I, 1976, Index issue).
 ${ }^{1}$ Previous part, Z. Meszaros and I. Hermecz, Tetrahedron Letters, 1975, 1019.
 ${ }^{2}$ G. R. Lappin, J. Amer. Chem. Soc., 1948, 70, 3348.
 ${ }^{3}$ H. Antaki, J. Amer. Chem. Soc., 1958, 80, 3066.

[^1]: ${ }^{10}$ A. Richardson, jun. and F. J. McCarty, J. Medicin. Chem., 1972, 15, 1203.
 ${ }^{11}$ (a) S. Carboni, A. Da Settimo, G. Pirisino, and D. Segnini, Gazzetta, 1966, 96, 103; (b) S. Carboni, A. Da Settimo, D. Segnini, and I. Tonetti, ibid., 1966, 96, 1443; (c) S. Carboni and A. Da Settimo, ibid., 1967, 97, 1262; (d) S. Carboni, A. Da Settimo, P. L. Ferrarini, I. Tonetti, and D. Bertini, ibid., 1967, 97, 1274; (e) S. Carboni, A. Da Settimo, D. Bertini, and G. Biagi, ibid., 1969, 99, 677; (f) S. Carboni, A. Da Settimo, and I. Tonetti, J. Heterocyclic Chem., 1970. 7, 875; (g) S. Carboni, A. Da Settimo, P. L. Ferrarini, and I. Tonetti, Gazzetta, 1971, 101, 129.

[^2]: ${ }^{12}$ J. F. Harper and D. G. Wibberley, J. Chem. Soc. (C), 1971, (a) p. 2985; (b) p. 2991.
 ${ }_{13}$ I. Hermecz, Z. Mészáros, J. Knoll, Á. Horváth, L. Debreczy, P. Dvortsák, and M. Csákvári, Hung.P. 166,577 (Hung. Teljes 9049).

[^3]: 14 E. M. Hawes and D. K. J. Gorecki, J. Heterocyclic Chem., 1974, 11, 151.
 ${ }_{15}$ (a) S. Carboni and M. Pardi, Ann. Chim. (Italy), 1959, 49, 1228; (b) S. Carboni, A. Da Settimo, and D. Segnini, J. Heterocyclic Chem., 1969, 6, 369; (c) S. Carboni, A. Da Settimo, D. Bertini, C. Mori, and I. Tonetti, ibid., 1971, 8, 637.

[^4]: ${ }^{21}$ S. Nishigaki, K. Ogiwara, K. Senga, S. Fukazawa, K. Aida. Y. Machida, and F. Yoneda, Chem. and Pharm. Bull. (Japan), 1970, 18, 1385.
 ${ }_{22}$ S. Minami, T. Shono, and J. Matsumoto, Chem. and Pharm. Bull. (Japan), 1971, 19, (a) p. 1426; (b) p. 1482.
 ${ }^{23}$ (a) B. Stanovnik and M. Tisler, Tetrahedron Letters, 1968, 33; (b) A. Pollak, B. Stanovnik, and M. Tisler, J. Org. Chem., 1971, 36, 2457; (c) B. Stanovnik, J. Heterocyclic Chem., 1971, 8, 1055; (d) P. Kregar-Cadez, A. Pollak, B. Stanovnik, M. Tisler, and B. Wechtersbach-Lazetic, ibid., 1972, 9, 351.
 ${ }^{24}$ J. G. Kuderna, R. D. Skiles, and K. Pilgram, J. Org. Chem., 1971, 36. 3506.

